17pC34-1

日本物理学会 第72回年次大会 2017年3月17日 大阪大学豊中キャンパス

大型ヘリカル装置における測地線音響モードの 亜臨界励起現象の実験的検証

Experimental Identification of Subcritical Instability of Geodesic Acoustic Mode in the LHD

自然科学研究機構 核融合科学研究所 井戸 毅

Acknowledgements

This study has been performed under collaboration with

K. Itoh, M. Osakabe, A. Shimizu, K. Ogawa, K. Ida, H. Wang, LHD experiment group (*NIFS, NINS* and *SOKENDAI*)

M. Lesur (Univ. Lorraine)

Y. Kosuga, M. Sasaki, S. Inagaki, S. –I. Itoh (*RIAM, Kyushu Univ.*) M. Nishiura (*Univ. Tokyo*)

This work was supported by

MEXT Japan under Grant-in-Aid

for Scientific Research (A) (No. 15H02155), (C) (No. 24561031, 15K06653),

for Challenging Exploratory Research (No. 24656561, 16K13923), and

for Young Scientists (B) (No. 15K18305),

NIFS/NINS under NIFS10ULHH020 and NIFS10ULHH023, and

Kyushu University under the Collaborative Research Program of Research

Institute for Applied Mechanics.

Contents

Background

Abrupt phenomena and subcritical instabilities

- Experimental results on abrupt excitation of the Geodesic Acoustic Mode (GAM) in the LHD
 - Characteristics of the abrupt excitation phenomenon
 - Spatial structure
 - > Mode coupling
 - > Nonlinear evolution and threshold in the amplitude

Interpretation of the abrupt excitation of the GAM

- Newly proposed excitation mechanism
 - Subcritical instability of GAM

Summary

Background: Abrupt phenomena

Abrupt phenomena are widely observed in laboratory plasmas and space plasmas. Disruption in tokamaks (Alcator C-Mod)

https://www.youtube.com/watch?v=CUfR819hIDg

http://www.nasa.gov/downloadable/videos/nasa_twisting_solar_eruption_ Time and_flare.mp4 Why does the growth rate increase suddenly and rapidly?

Why does the growth rate increase suddenly and rapidly?

 \rightarrow The rate of change in linear growth rate is too

slow to explain the abrupt phenomena.

Time

Reviewed in S. -I. Itoh, et al. Plasma Phys. Controll. Fusion 40, 879 (1998)

Subcritical instability

The rate of change in the growth rate is determined by the rate of change in driving or damping source, such as ∇p , current profiles, and so on.

$$\frac{\partial \gamma}{\partial t} = \frac{\partial \gamma}{\partial \beta} \frac{\partial \beta}{\partial t} + \frac{\partial \gamma}{\partial q} \frac{\partial q}{\partial t} + \cdots$$

→ The rate of change in linear growth rate is too slow to explain the abrupt phenomena.

The instability is driven when the amplitude exceeds a threshold, even if macro parameters don't change.

→ Although a sufficient trigger is necessary , sudden and rapid growth is possible, regardless of change in the macro parameters.

Subcritical instability

- Threshold
- Trigger
- Rapid change in the growth rate

Subcritical instabilities appear widely in nature. (see M. Lesur, J. Plasma Fusion Res. **92**, 665(2016))

Neutral fluid (theory , Experiment)

- Planer Couette flow
- Planer Poiseuille flow

High temperature plasma (theory)

- Current diffusive interchange mode[Yagi, PoP(1995)]
- Neoclassical tearing mode[Carrera, PoF(1986)]
- Energetic particle driven instabilities(e.g. Berk-Braizman model)
- Onset of solar flare [Kusano, Astrophys. J. (2012)]

Experiment in the LHD: Experimental setup

-0.2

-0.4

-0.6

3.0

 $E_{b} = 1.134 \text{ MeV}$

Probe beam: Au

4.5

4.0

3.5

R (m)

- HIBP : $\tilde{\phi}$ and \tilde{n} in the core region
- NPA : Energy spectra of confined ions
- N-NBI : Heating source and energetic particle source

A intense mode is abruptly excited during frequency chirping of an EGAM.

- Tangential Neutral Beam Injection (NBI)
 ECH is applied.
 n_e ~ 0.1 x 10¹⁹ (m⁻³), H plasma
 T. Ido, et al. Nucl. Fusion 55, 083024 (2015)
 T. Ido, et al., Phys. Rev. Lett. 116, 015002 (2016)
 n_e ~ 0.1 x 10¹⁹ (m⁻³), H plasma
 - Energetic particle-driven GAM (EGAM) is • *T_{e,O}*~8 keV, *T_{i,NPA}*~0.6 keV. observed routinely in LHD plasmas. $d\tilde{B}_{\theta}/dt$ [Mirnov] #119729 (a.u.) EGAM 0.0 • @ -0.2 150 Frequency (kHz) 0 20 0 EGAM -2xGAM freq. GAM frea. ~ 40 kHz) 3.750 3.900 3.800 3.850 Time (s) $100 \, \text{ms}$
 - When the frequency of this chirping EGAM reaches twice the GAM frequency, another strong mode with the GAM frequency is abruptly and transiently excited.

A GAM is abruptly excited during frequency chirping of an EGAM

- Time scale of the abrupt excitation (< 1 ms) << that of the EGAM(a few ms).
- The amplitude of the abruptly-excited GAM is 2-3 times larger than that of the EGAM.

Spatial structures of the abruptly-excited mode agree with those of the GAM.

- The GAM exists in the same region as the EGAM.
- Uniform in the toroidal direction (n = 0)
- In the poloidal cross section, up-down symmetry for $\tilde{\phi}(m = 0)$ up-down antisymmetry for $\tilde{n}(m = 1)$
- GAM frequency
- ⇒ The abruptly-excited mode is a GAM.

Phase relation between the EGAM and the abruptly-excited GAM

The phase relation between the EGAM and the abruptly-excited GAM shows a common tendency in the two events (also in the other events).

→ Mode coupling between the EGAM and the abruptly-excited GAM is suggested.

A GAM is abruptly excited during frequency chirping of an EGAM

- Time scale of the abrupt excitation (< 1 ms) << that of the EGAM.
- The GAM is excited in the same region as the EGAM.
- The phase relation suggests mode coupling between the EGAM and the GAM.
- The amplitude of the lower-frequency GAM is larger than that of the highfrequency EGAM.

The Manley-Rowe relation is not satisfied: $P_1/f_1 \neq P_2/f_2$

 \rightarrow Not simple mode coupling

Nonlinear evolution of the abruptly-excited GAM has been observed.

①After the growth rate increases, it decreases as the amplitude increases because the driving source is consumed by the mode excitation.

(This behavior is common for linear instabilities.)

Nonlinear evolution of the abruptly-excited GAM has been observed.

Nonlinear evolution of the abruptly-excited GAM has been observed.

 After the growth rate increases, it decreases as the amplitude increases because the driving source is consumed by the mode excitation.
 When the amplitude exceeds a threshold, the growth rate becomes an increasing function of amplitude. (nonlinear growth)

Theoretical model of the abrupt excitation of the GAM

M. Lesur, Phys. Rev. Lett. 116, 015003 (2016), K. Itoh, Plasma Phys. Reports 42 428 (2016)

• GAM (Freq. $\omega_1 \sim \omega_{GAM}$, Amplitude Z_1) $\zeta_j \equiv k_j x - \omega_j t$ $\frac{dZ_1}{dt} = -\gamma_d Z_1 - \frac{m\omega_1^3}{4\pi q m_0} \int f(x, v, t) e^{-i\zeta_1} dx dv - i \frac{V}{\omega_1} Z_2 Z_1^* e^{-i\theta t}$

Kinetic nonlinearity

Fluid nonlinearity

M. Sasaki, Phys. Plasma (2009)
K. Itoh, Phys Plasma (2005)
→ Parametric instability

- EGAM (Freq. $\omega_2 \sim 2\omega_{GAM}$, Amplitude Z_2) $\frac{dZ_2}{dt} = -i \frac{V}{\omega_2} Z_1^2 e^{i\theta t}$
- $\theta \equiv \omega_2(t) 2\omega_1$ (frequency mismatch)

Distribution function

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q E_1}{m} \frac{\partial f}{\partial v} = \frac{v_f^2}{k_1} \frac{\partial \delta f}{\partial v} + \frac{v_d^3}{k_1^2} \frac{\partial^2 \delta f}{\partial v^2} \qquad \qquad \gamma_{L,0} = \frac{\pi \omega_1^3}{2k_1^2 n_0} \frac{\partial f_0}{\partial v}$$

The simulation reproduces the observed temporal behaviors.

The simulation reproduces the experiment:

- The GAM is excited when the frequency of EGAM approaches twice the GAM frequency.
- Time constant of the evolution of the GAM.
- The amplitude of the GAM becomes larger than that of the EGAM.

The simulation also reproduces the observed phase relation.

The phase relation between GAM and EGAM is also simulated by the proposed theoretical model.

MEGA code may simulate a kinetic coupling as the trigger.

MEGA code [Y .Todo, Nucl Fusion(2010)084016]

- MHD fluid
- Kinetic energetic particle
- \rightarrow EGAM can also be simulated.

H. Wang, 26th IAEA Fusion Energy Conference (2016) TH/P4-11 (Lecture of Young Scientist Award of Physical Society of Japan(2017) 20aC34-11)

Interaction between the EGAM and the GAM via energetic particles

Threshold in the amplitude of the EGAM

Subcritical instability of the GAM

The EGAM triggers the GAM through parametric coupling (and/or kinetic coupling).
↓
Once the amplitude of the GAM exceeds a threshold, kinetic nonlinearity and fluid mode coupling make the GAM unstable.
22

Impact of this study

Summary

- > Abrupt excitation of a GAM is found in the LHD.
- > The characteristics of the abruptly-excited GAM have been investigated:
 - The abruptly-excited GAM appears when the frequency of the chirping EGAM reaches twice the GAM frequency.
 - The growth rate and amplitude are larger than those of the EGAM.
 - The phase between the GAM and the EGAM suggests the mode coupling between the GAM and the EGAM.
 - The behaviors of the growth rate suggests that the GAM grows through nonlinear process.
- Newly proposed theoretical model, which take into account fluid nonlinearity and kinetic nonlinearity, can reproduce the experimental results (phase relation, amplitude, and time scale of the abrupt excitation), quantitatively.
- The abrupt excitation phenomenon observed in the LHD is interpreted as the excitation of <u>subcritical instability</u>.
- This study show an experimental path to explore the trigger problem of abrupt phenomena.