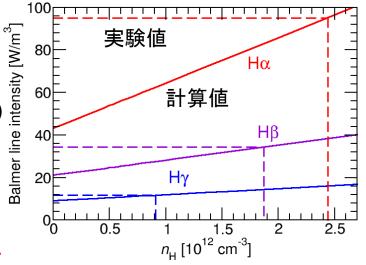

水素原子・分子線計測および衝突・輻射モデル解析による基底状態水素原子密度評価

吉村渓冴^A, 髙橋宏幸^A, 西村涼汰^A, 原智也^A, 加賀谷重考^A, 大塚翔吾^A, 多寳諒介^A, 大石鉄太郎^A, 飛田健次^A, 澤田圭司^B 東北大院工^A, 信州大^B

- 本研究の成果

放電中の分子密度 (n_{H2}) および基底状態の水素原子密度 (n_{H}) を同時に得られる手法を確立した



水素分子・原子線の絶対測光と 衝突・輻射解析^[1]を組み合わせて n_{H2}およびn_Hを評価

 $(T_{\rm e} \sim 10.6 \text{ eV}, n_{\rm e} \sim 6.1 \text{ x } 10^{10} \text{ cm}^{-3}$ のプラズマを計測)

n _{H2} の評価手法	n _{H2} [cm ⁻³]
放電前の圧力から算出	1.9 x 10 ¹⁴
Fulcher-α帯発光から評価	8.0×10^{12}

- ➤ 放電中のn_{H2}は放電前に比べて1/10以下
- ▶n₁を得ることに成功
 - ✓ 輝線による差は輻射捕獲が 影響している可能性
 - ✓輻射捕獲の影響が小さいHγ^[2]では n_H/n_{H2} ~ 0.11

輝線	<i>n</i> _H [cm ⁻³]
Ηα	2.4 x 10 ¹²
Нβ	1.9 x 10 ¹²
Нγ	9.1 x 10 ¹¹